Matematisk-fysiske Meddelelser udgivet af

Det Kongelige Danske Videnskabernes Selskab Bind 31, no. 3

ON THE PROBLEM OF THREE BODIES IN THE PLANE

BY
J. F. STEFFENSEN

København 1957
i kommission hos Ejnar Munksgaard

Synopsis.

Three bodies with finite masses are assumed to move in a plane, subject to Newton's law of gravitation. By the introduction of suitable auxiliary variables the equations of motion are transformed into a system of differential equations of the second degree, permitting to expand the unknown quantities in powers of the time t, the coefficients of $t v$ being calculated by means of a set of recurrence formulas. Sufficient conditions for the convergence of the resulting series are given, and the practical working of the method is illustrated by a numerical example.

1. On a former occasion ${ }^{1}$ I have shown how a particular case of the Problem of Three Bodies can be dealt with by transforming the equations of motion into a system of differential equations of the second degree in the unknown variables, permitting to expand these in powers of the time t, the coefficients of t^{ν} being calculated by a set of recurrence formulas. The same method can, in principle, be employed in other cases of the dynamical astronomy, and I propose in the present paper to extend it to the problem of three finite bodies moving in the same fixed plane and subject to Newton's law of gravitation. The number of recurrence formulas naturally increases, but without becoming unwieldy, as will be shown by a numerical example.

Let the three masses be m_{1}, m_{2} and m_{3}, the coordinates of m_{i} being (x_{i}, y_{i}), and let us put

$$
\begin{align*}
& r_{1}^{2}=\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2} \\
& r_{2}^{2}=\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2} \tag{1}\\
& r_{3}^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}
\end{align*}
$$

so that r_{1} is the distance between m_{2} and m_{3}, etc.
Then the equations of motion are ${ }^{2}$

$$
\begin{align*}
\frac{d^{2} x_{1}}{d t^{2}} & =m_{2} \frac{x_{2}-x_{1}}{r_{3}^{3}}+m_{3} \frac{x_{3}-x_{1}}{r_{2}^{3}} \\
\frac{d^{2} x_{2}}{d t^{2}} & =m_{3} \frac{x_{3}-x_{2}}{r_{1}^{3}}+m_{1} \frac{x_{1}-x_{2}}{r_{3}^{3}} \tag{2}\\
\frac{d^{2} x_{3}}{d t^{2}} & =m_{1} \frac{x_{1}-x_{3}}{r_{2}^{3}}+m_{2} \frac{x_{2}-x_{3}}{r_{1}^{3}}
\end{align*}
$$

and corresponding equations with y instead of x.

[^0]We now introduce for $i=1,2,3$ the auxiliary variables

$$
\begin{equation*}
\varrho_{i}=r_{i}^{2}, \quad \sigma_{i}=r_{i}^{-3}, \tag{3}
\end{equation*}
$$

so that

$$
\begin{gather*}
2 \varrho_{i} \frac{d \sigma_{i}}{d t}+3 \sigma_{i} \frac{d \varrho_{i}}{d t}=0, \tag{4}\\
\varrho_{1}=\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2} \\
\varrho_{2}=\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2} \tag{5}\\
\varrho_{3}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}
\end{gather*}
$$

while the equations of motion become

$$
\begin{align*}
\frac{d^{2} x_{1}}{d t^{2}} & =m_{2}\left(x_{2}-x_{1}\right) \sigma_{3}+m_{3}\left(x_{3}-x_{1}\right) \sigma_{2} \\
\frac{d^{2} x_{2}}{d t^{2}} & =m_{3}\left(x_{3}-x_{2}\right) \sigma_{1}+m_{1}\left(x_{1}-x_{2}\right) \sigma_{3} \tag{6}\\
\frac{d^{2} x_{3}}{d t^{2}} & =m_{1}\left(x_{1}-x_{3}\right) \sigma_{2}+m_{2}\left(x_{2}-x_{3}\right) \sigma_{1}
\end{align*}
$$

and corresponding equations with y instead of x.
For the determination of the 12 unknowns $x_{i}, y_{i}, \sigma_{i}, \varrho_{i}$ we now have the 12 equations (4), (5), (6) and the corresponding equations in y, which are all of the second degree in the unknowns and can be treated in the way indicated above.
2. If, however, only the distances of the masses from each other at any given time are required, the number of equations can be reduced to 10 . In that case the absolute positions in the plane can be determined afterwards, if desired. This is the relativistic point of view, familiar from the treatment of the Restricted Problem of Three Bodies. In the present case we put

$$
\begin{array}{ll}
\xi_{1}=x_{2}-x_{3}, & \xi_{2}=x_{3}-x_{1} \\
\eta_{1}=y_{2}-y_{3}, & \eta_{2}=y_{3}-y_{1} \tag{7}
\end{array}
$$

and for abbreviation

$$
\begin{equation*}
M_{1}=m_{2}+m_{3}, \quad M_{2}=m_{1}+m_{3} \tag{8}
\end{equation*}
$$

We then obtain from (5)

$$
\begin{align*}
& \varrho_{1}=\xi_{1}^{2}+\eta_{1}^{2}, \quad \varrho_{2}=\xi_{2}^{2}+\eta_{2}^{2} \tag{9}\\
& \varrho_{3}=\varrho_{1}+\varrho_{2}+2 \xi_{1} \xi_{2}+2 \eta_{1} \eta_{2}
\end{align*}
$$

and from (6)

$$
\begin{align*}
\frac{d^{2} \xi_{1}}{d t^{2}} & =m_{1}\left(\xi_{2} \sigma_{2}-\xi_{1} \sigma_{3}-\xi_{2} \sigma_{3}\right)-M_{1} \xi_{1} \sigma_{1} \\
\frac{d^{2} \xi_{2}}{d t^{2}} & =m_{2}\left(\xi_{1} \sigma_{1}-\xi_{1} \sigma_{3}-\xi_{2} \sigma_{3}\right)-M_{2} \xi_{2} \sigma_{2} \tag{10}
\end{align*}
$$

and, replacing ξ by η in this,

$$
\begin{align*}
\frac{d^{2} \eta_{1}}{d t^{2}} & =m_{1}\left(\eta_{2} \sigma_{2}-\eta_{1} \sigma_{3}-\eta_{2} \sigma_{3}\right)-M_{1} \eta_{1} \sigma_{1} \\
\frac{d^{2} \eta_{2}}{d t^{2}} & =m_{2}\left(\eta_{1} \sigma_{1}-\eta_{1} \sigma_{3}-\eta_{2} \sigma_{3}\right)-M_{2} \eta_{2} \sigma_{2} \tag{11}
\end{align*}
$$

(4) and (9)-(11) are 10 equations for determining the 10 unknowns $\xi_{1}, \xi_{2}, \eta_{1}, \eta_{2}, \varrho_{i}, \sigma_{i}$. We propose to satisfy them by power series in t, putting

$$
\left.\begin{array}{c}
\xi_{1}=\Sigma \alpha_{\nu} t^{v}, \quad \xi_{2}=\Sigma \beta_{v} t^{v} \\
\eta_{1}=\Sigma \gamma_{\nu} t^{v}, \quad \eta_{2}=\Sigma \delta_{\nu} t^{\nu} \\
\varrho_{1}=\Sigma a_{\nu} t^{v}, \quad \varrho_{2}=\Sigma b_{\nu} t^{\nu}, \quad \varrho_{3}=\Sigma c_{\nu} t^{\nu} \tag{13}\\
\sigma_{1}=\Sigma d_{\nu} t^{v}, \quad \sigma_{2}=\Sigma e_{\nu} t^{v}, \quad \sigma_{3}=\Sigma f_{v} t^{v}
\end{array}\right\}
$$

the summation being everywhere from $v=0$ to $v=\infty$.
Inserting these expansions in the aforesaid equations and demanding that the coefficients of t^{n} shall vanish, we obtain recurrence formulas for the determination of the coefficients.

We write for abbreviation

$$
\begin{equation*}
\varepsilon_{v}=\alpha_{\nu}+\beta_{v}, \quad \zeta_{\nu}=\gamma_{v}+\delta_{v} \tag{14}
\end{equation*}
$$

and for the product-sums

$$
\begin{equation*}
(\alpha d)_{n}=\sum_{\nu=0}^{n} \alpha_{\nu} d_{n-\nu}, \text { etc. } \tag{15}
\end{equation*}
$$

In this notation we obtain from (10) and (11)

$$
\begin{align*}
& (n+2)^{(2)} \alpha_{n+2}=m_{1}\left[(\beta e)_{n}-(\varepsilon f)_{n}\right]-M_{1}(\alpha d)_{n} \\
& (n+2)^{(2)} \beta_{n+2}=m_{2}\left[(\alpha d)_{n}-(\varepsilon f)_{n}\right]-M_{2}(\beta e)_{n} \\
& (n+2)^{(2)} \gamma_{n+2}=m_{1}\left[(\delta e)_{n}-(\zeta f)_{n}\right]-M_{1}(\gamma d)_{n} \tag{16}\\
& (n+2)^{(2)} \delta_{n+2}=m_{2}\left[(\gamma d)_{n}-(\zeta f)_{n}\right]-M_{2}(\delta e)_{n}
\end{align*}
$$

where $(n+2)^{(2)}$ as usual is short for $(n+2)(n+1)$.

Further, we obtain from (9)

$$
\begin{align*}
& a_{n}=(\alpha \alpha)_{n}+(\gamma \gamma)_{n} \\
& b_{n}=(\beta \beta)_{n}+(\delta \delta)_{n} \tag{17}\\
& c_{n}=a_{n}+b_{n}+2(\alpha \beta)_{n}+2(\gamma \delta)_{n}
\end{align*}
$$

and finally from (4)

$$
\begin{align*}
& -2 n a_{0} d_{n}=\sum_{\nu=0}^{n-1}(3 n-v) d_{\nu} a_{n-v} \\
& -2 n b_{0} e_{n}=\sum_{\nu=0}^{n-1}(3 n-v) e_{\nu} b_{n-v} \tag{18}\\
& -2 n c_{0} f_{n}=\sum_{\nu=0}^{n-1}(3 n-v) f_{\nu} c_{n-v} .
\end{align*}
$$

3. The number of constants of integration in (10) and (11), where the σ_{i} are known functions of the ξ_{i} and η_{i}, is only 8 instead of 12 in the original statement of the problem. It is natural to choose as initial values the values of $\xi_{i}, \eta_{i}, \frac{d \xi_{i}}{d t}$ and $\frac{d \eta_{i}}{d t}$ for $t=0$, that is

$$
\begin{equation*}
\alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \delta_{0}, \delta_{1} \tag{19}
\end{equation*}
$$

We then obtain first from (17)

$$
\begin{align*}
& a_{0}=\alpha_{0}^{2}+\gamma_{0}^{2} \\
& b_{0}=\beta_{0}^{2}+\delta_{0}^{2} \tag{20}\\
& c_{0}=a_{0}+b_{0}+2 \alpha_{0} \beta_{0}+2 \gamma_{0} \delta_{0}
\end{align*}
$$

while the relation $\sigma_{i}^{2} \varrho_{i}^{3}=1$, resulting from (3), yields, σ_{i} and ϱ_{i} being positive,

$$
\begin{equation*}
d_{0}=\frac{1}{a_{0} \sqrt{a_{0}}}, e_{0}=\frac{1}{b_{0} \sqrt{b_{0}}}, f_{0}=\frac{1}{c_{0} \sqrt{c_{0}}} . \tag{21}
\end{equation*}
$$

After this we find by (17) and (18)

$$
\begin{gather*}
a_{1}=2\left(\alpha_{0} \alpha_{1}+\gamma_{0} \gamma_{1}\right) \\
b_{1}=2\left(\beta_{0} \beta_{1}+\delta_{0} \delta_{1}\right) \tag{22}\\
c_{1}=a_{1}+b_{1}+2(\alpha \beta)_{1}+2(\gamma \delta)_{1} \\
-2 a_{0} d_{1}=3 d_{0} a_{1}, \quad-2 b_{0} e_{1}=3 e_{0} b_{1}, \quad-2 c_{0} f_{1}=3 f_{0} c_{1} \tag{23}
\end{gather*}
$$

The following coefficients are calculated in succession by (16)-(18). The first few of them are

$$
\begin{align*}
& 2 \alpha_{2}=m_{1}\left(\beta_{0} e_{0}-\varepsilon_{0} f_{0}\right)-M_{1} \alpha_{0} d_{0} \\
& 2 \beta_{2}=m_{2}\left(\alpha_{0} d_{0}-\varepsilon_{0} f_{0}\right)-M_{2} \beta_{0} e_{0} \\
& 2 \gamma_{2}=m_{1}\left(\delta_{0} e_{0}-\zeta_{0} f_{0}\right)-M_{1} \gamma_{0} d_{0} \tag{24}\\
& 2 \delta_{2}=m_{2}\left(\gamma_{0} d_{0}-\zeta_{0} f_{0}\right)-M_{2} \delta_{0} e_{0} . \\
& a_{2}=\alpha_{1}^{2}+\gamma_{1}^{2}+2\left(\alpha_{0} \alpha_{2}+\gamma_{0} \gamma_{2}\right) \\
& b_{2}=\beta_{1}^{2}+\delta_{1}^{2}+2\left(\beta_{0} \beta_{2}+\delta_{0} \delta_{2}\right) \tag{25}\\
& c_{2}=a_{2}+b_{2}+2(\alpha \beta)_{2}+2(\gamma \delta)_{2} . \\
&-4 a_{0} d_{2}=6 d_{0} a_{2}+5 d_{1} a_{1} \\
&-4 b_{0} e_{2}=6 e_{0} b_{2}+5 e_{1} b_{1} \tag{26}\\
&-4 c_{0} f_{2}=6 f_{0} c_{2}+5 f_{1} c_{1} . \\
& 6 \alpha_{3}=m_{1}\left[(\beta e)_{1}-(\varepsilon f)_{1}\right]-M_{1}(\alpha d)_{1} \\
& 6 \beta_{3}=m_{2}\left[(\alpha d)_{1}-(\varepsilon f)_{1}\right]-M_{2}(\beta e)_{1} \tag{27}\\
& 6 \gamma_{3}= m_{1}\left[(\delta e)_{1}-(\zeta f)_{1}\right]-M_{1}(\gamma d)_{1} \\
& 6 \delta_{3}= m_{2}\left[(\gamma d)_{1}-(\zeta f)_{1}\right]-M_{2}(\delta e)_{1} . \\
& a_{3}= 2\left(\alpha_{0} \alpha_{3}+\alpha_{1} \alpha_{2}+\gamma_{0} \gamma_{3}+\gamma_{1} \gamma_{2}\right) \\
& b_{3}= 2\left(\beta_{0} \beta_{3}+\beta_{1} \beta_{2}+\delta_{0} \delta_{3}+\delta_{1} \delta_{2}\right) \tag{28}\\
& c_{3}= a_{3}+b_{3}+2(\alpha \beta)_{3}+2(\gamma \delta)_{3} . \\
&-6 a_{0} d_{3}=9 d_{0} a_{3}+8 d_{1} a_{2}+7 d_{2} a_{1} \\
&-6 b_{0} e_{3}=9 e_{0} b_{3}+8 e_{1} b_{2}+7 e_{2} b_{1} \tag{29}\\
&-6 c_{0} f_{3}=9 f_{0} c_{3}+8 f_{1} c_{2}+7 f_{2} c_{1} .
\end{align*}
$$

4. For the purpose of examining the convergence we put

$$
\begin{equation*}
H_{v}=\frac{\lambda^{\nu}}{(\nu+2)^{(2)}} \quad(\lambda>0) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{n}=\sum_{\nu=1}^{n} \frac{1}{v} \tag{31}
\end{equation*}
$$

We have then identically
$\lambda^{-n} H_{v} H_{n-v}=\left(\frac{1}{v+1}+\frac{1}{n-v+1}\right) \frac{1}{(n+3)^{(2)}}-\left(\frac{1}{v+2}+\frac{1}{n-v+2}\right) \frac{1}{(n+4)^{(2)}}$
whence

$$
\begin{align*}
& \sum_{\nu=0}^{n} H_{\nu} H_{n-v}=2 \lambda^{n} \frac{2 s_{n+1}+n+1}{(n+4)^{(3)}} . \tag{33}\\
& \sum_{\nu=0}^{n-1} H_{v} H_{n-v}=\lambda^{n} \frac{4 s_{n+1}+\frac{3}{2} n-1-\frac{3}{n+1}}{(n+4)^{(3)}} \quad(n \geqslant 1) . \tag{34}\\
& \sum_{\nu=2}^{n-2} H_{v} H_{n-v}=\frac{2}{3} \lambda^{n} \frac{6 s_{n}+n-10-\frac{12}{n}}{(n+4)^{(3)}} \quad(n \geqslant 4) . \tag{35}
\end{align*}
$$

Furthermore we have the identity

$$
\begin{equation*}
\lambda^{-n} v H_{\nu} H_{n-v}=\left(\frac{n+1}{n-v+1}-\frac{1}{v+1}\right) \frac{1}{(n+3)^{(2)}}-\left(\frac{n+2}{n-v+2}-\frac{2}{v+2}\right) \frac{1}{(n+4)^{(2)}} \tag{36}
\end{equation*}
$$

whence

$$
\begin{equation*}
\sum_{\nu=1}^{n-1} v H_{\nu} H_{n-v}=\frac{n \lambda^{n}}{(n+4)^{(3)}}\left(2 s_{n+1}+\frac{n}{2}-2-\frac{3}{n+1}\right) \quad(n \geqslant 2) \tag{37}
\end{equation*}
$$

5. After these preliminaries we begin with the first of the equations (17) which, keeping the constants of integration apart and assuming $n \geqslant 3$, we write in the form

$$
\begin{equation*}
a_{n}=2\left(\alpha_{0} \alpha_{n}+\alpha_{1} \alpha_{n-1}+\gamma_{0} \gamma_{n}+\gamma_{1} \gamma_{n-1}\right)+\sum_{\nu=2}^{n-2}\left(\alpha_{\nu} \alpha_{n-v}+\gamma_{v} \gamma_{n-v}\right) \tag{38}
\end{equation*}
$$

where the sum is interpreted as zero, if $n=3$.
We now assume that for a certain $n \geqslant 3$ and for $2 \leq v \leq n$ is

$$
\begin{equation*}
\left|\alpha_{\nu}\right| \leq \alpha H_{v},\left|\beta_{v}\right| \leq \beta H_{v},\left|\gamma_{\nu}\right| \leq \gamma H_{v},\left|\delta_{\nu}\right| \leq \delta H_{\nu} . \tag{39}
\end{equation*}
$$

In that case we get from (38)

$$
\begin{equation*}
\left|a_{n}\right| \leq 2\left(\alpha\left|\alpha_{0}\right|+\gamma\left|\gamma_{0}\right|\right) H_{n}+2\left(\alpha\left|\alpha_{1}\right|+\gamma\left|\gamma_{1}\right|\right) H_{n-1}+\left(\alpha^{2}+\gamma^{2}\right) \sum_{\nu=2}^{n-2} H_{\nu} H_{n-v} \tag{40}
\end{equation*}
$$

By (35) we obtain from this

$$
\begin{align*}
\left|a_{n}\right| \leq 2\left(\alpha\left|\alpha_{0}\right|\right. & \left.+\gamma\left|\gamma_{0}\right|\right) \frac{\lambda^{n}}{(n+2)^{(2)}}+2\left(\alpha\left|\alpha_{1}\right|+\gamma\left|\gamma_{1}\right|\right) \frac{\lambda^{n-1}}{(n+1)^{(2)}} \\
& +\frac{2}{3}\left(\alpha^{2}+\gamma^{2}\right)\left(6 s_{n}+n-10-\frac{12}{n}\right) \frac{\lambda^{n}}{(n+4)^{(3)}} \tag{41}
\end{align*}
$$

In this, the last term is left out for $n<4$, but since it vanishes for $n=3$, (41) is valid for $n \geqslant 3$.

A sufficient condition for $\left|a_{n}\right| \leq A H_{n}$ for $n \geqslant 3$ is therefore that the righthand side of (41) is $\leq A \frac{\lambda^{n}}{(n+2)^{(2)}}$ which, after multiplication by $\frac{1}{2}(n+2)^{(2)} \lambda^{-n}$ may be written
$\alpha\left|\alpha_{0}\right|+\gamma\left|\gamma_{0}\right|+\left(\alpha\left|\alpha_{1}\right|+\gamma\left|\gamma_{1}\right|\right) \frac{n+2}{n \lambda}+\frac{\alpha^{2}+\gamma^{2}}{3}\left(6 s_{n}+n-10-\frac{12}{n}\right) \frac{n+1}{(n+4)^{(2)}} \leq \frac{A}{2}$.
From (42) we derive a sufficient condition which is independent of n, replacing the factors depending on n by absolute numbers which are at least as large. We first have

$$
\begin{equation*}
\frac{n+2}{n}=1+\frac{2}{n} \leq \frac{5}{3} \quad(n \geqslant 3) \tag{43}
\end{equation*}
$$

and proceed to prove that

$$
\begin{equation*}
\left(6 s_{n}+n-10-\frac{12}{n}\right) \frac{n+1}{(n+4)^{(2)}}<2 \quad(n>3) \tag{44}
\end{equation*}
$$

Now it is verified directly that (44) is valid for $n=3$ and $n=4$, so that in the remainder of the proof we may assume $n \geqslant 5$. But we have obviously

$$
\begin{equation*}
s_{n} \leq s_{k}+\frac{n-k}{k+1} \quad(n>k) \tag{45}
\end{equation*}
$$

whence, in particular,

$$
\begin{equation*}
s_{n} \leq s_{5}+\frac{n-5}{6}=\frac{n}{6}+\frac{29}{20} \quad(n \geqslant 5) \tag{46}
\end{equation*}
$$

and inserting this in (44) we get the more rigid inequality

$$
\frac{2 n-1 \cdot 3-\frac{12}{n}}{n+4} \cdot \frac{n+1}{n+3}<2
$$

which is obvious, the first factor on the left being less than 2, and the second less than 1.

By (43) and (44) we finally obtain from (42) the following sufficient condition, which does not depend on n, for $\left|a_{n}\right| \leq A H_{n}$

$$
\begin{equation*}
\alpha\left|\alpha_{0}\right|+\gamma\left|\gamma_{0}\right|+\frac{5}{3 \lambda}\left(\alpha\left|\alpha_{1}\right|+\gamma\left|\gamma_{1}\right|\right)+\frac{2}{3}\left(\alpha^{2}+\gamma^{2}\right) \leq \frac{A}{2}, \tag{47}
\end{equation*}
$$

always provided that $n \geqslant 3$.
After this, a comparison of the two first equations (17) shows that we obtain from (47), by a simple exchange of letters, as a sufficient condition for $\left|b_{n}\right| \leq B H_{n}$ for $n \geqslant 3$

$$
\begin{equation*}
\beta\left|\beta_{0}\right|+\delta\left|\delta_{0}\right|+\frac{5}{3 \lambda}\left(\beta\left|\beta_{1}\right|+\delta\left|\delta_{1}\right|\right)+\frac{2}{3}\left(\beta^{2}+\delta^{2}\right) \leq \frac{B}{2} \tag{48}
\end{equation*}
$$

As regards the third equation (17) we begin by writing it in the form, valid for $n \geqslant 3$,

$$
\begin{align*}
& c_{n}=a_{n}+b_{n}+2\left(\alpha_{0} \beta_{n}+\alpha_{1} \beta_{n-1}+\beta_{0} \alpha_{n}+\beta_{1} \alpha_{n-1}+\gamma_{0} \delta_{n}+\gamma_{1} \delta_{n-1}+\delta_{0} \gamma_{n}+\delta_{1} \gamma_{n-1}\right) \\
&+2 \sum_{\nu=2}^{n-2}\left(\alpha_{\nu} \beta_{n-v}+\gamma_{\nu} \delta_{n-v}\right) \tag{49}
\end{align*}
$$

From this we obtain in the same way as above

$$
\left.\begin{array}{l}
\left|c_{n}\right| \leq 2 H_{n}\left(\frac{A+B}{2}+\alpha\left|\beta_{0}\right|+\beta\left|\alpha_{0}\right|+\gamma\left|\delta_{0}\right|+\delta\left|\gamma_{0}\right|\right) \\
\quad+2 H_{n-1}\left(\alpha\left|\beta_{1}\right|+\beta\left|\alpha_{1}\right|+\gamma\left|\delta_{1}\right|+\delta\left|\gamma_{1}\right|\right)+2(\alpha \beta+\gamma \delta) \sum_{\nu=2}^{n-2} H_{\nu} H_{n-v} \tag{50}
\end{array}\right\}
$$

A sufficient condition for $\left|c_{n}\right| \leq C H_{n}$ is therefore that the right-hand side of (50) is $\leq C \frac{\lambda^{n}}{(n+2)^{(2)}}$, and this may, by (30) and (35) and after multiplication by $\frac{1}{2}(n+2)^{(2)} \lambda^{-n}$, be written

$$
\left.\begin{array}{rl}
\frac{A+B}{2}+ & \alpha\left|\beta_{0}\right|+\beta\left|\alpha_{0}\right|+\gamma\left|\delta_{0}\right|+\delta\left|\gamma_{0}\right|+\left(\alpha\left|\beta_{1}\right|+\beta\left|\alpha_{1}\right|+\gamma\left|\delta_{1}\right|+\delta\left|\gamma_{1}\right|\right) \frac{n+2}{n \lambda} \\
& +\frac{2}{3}(\alpha \beta+\gamma \delta)\left(6 s_{n}+n-10-\frac{12}{n}\right) \frac{n+1}{(n+4)^{(2)}} \leq \frac{C}{2} \tag{51}
\end{array}\right\}
$$

By (43) and (44) we obtain finally the more severe, but of n independent, condition, valid for $n \geqslant 3$, for $\left|c_{n}\right| \leq C H_{n}$

Nr. 3

$$
\left.\begin{array}{c}
\alpha\left|\beta_{0}\right|+\beta\left|\alpha_{0}\right|+\gamma\left|\delta_{0}\right|+\delta\left|\gamma_{0}\right|+\frac{5}{3 \lambda}\left(\alpha\left|\beta_{1}\right|+\beta\left|\alpha_{1}\right|+\gamma\left|\delta_{1}\right|+\delta\left|\gamma_{1}\right|\right) \\
+\frac{4}{3}(\alpha \beta+\gamma \delta) \leq \frac{1}{2}(C-A-B) \tag{52}
\end{array}\right\}
$$

6. We now consider (18), assuming that for a certain $n \geqslant 2$ we have proved that for $1 \leq v \leq n$

$$
\begin{equation*}
\left|a_{\nu}\right| \leq A H_{v}, \quad\left|b_{v}\right| \leq B H_{v}, \quad\left|c_{v}\right| \leq C H_{v} \tag{53}
\end{equation*}
$$

and for $0 \leq v \leq n-1$ that

$$
\begin{equation*}
\left|d_{\nu}\right| \leq D H_{\nu}, \quad\left|e_{\nu}\right| \leq E H_{v}, \quad\left|f_{\nu}\right| \leq F H_{v} . \tag{54}
\end{equation*}
$$

We then obtain from the first of the equations (18)

$$
\begin{equation*}
2 n a_{0}\left|d_{n}\right| \leq D A\left(3 n \sum_{v=0}^{n-1} H_{v} H_{n-v}+\sum_{\nu=1}^{n-1} v H_{v} H_{n-v}\right) \tag{55}
\end{equation*}
$$

whence by (34) and (37), after reduction

$$
\begin{equation*}
2 a_{0}\left|d_{n}\right| \leq D A\left(14 s_{n+1}+5 n-5-\frac{12}{n+1}\right) \frac{\lambda^{n}}{(n+4)^{(3)}} \tag{56}
\end{equation*}
$$

A sufficient condition for $\left|d_{n}\right| \leq D H_{n}$ is therefore that the right-hand side of (56) is $\leq 2 a_{0} D \frac{\lambda^{n}}{(n+2)^{(2)}}$, which may be written

$$
\begin{equation*}
\left(14 s_{n+1}+5 n-5-\frac{12}{n+1}\right) \frac{n+1}{(n+4)^{(2)}} \leq \frac{2 a_{0}}{A} . \tag{57}
\end{equation*}
$$

We will now show that this condition may be replaced by the more restricted sufficient condition

$$
\begin{equation*}
3 A \leq a_{0} \tag{58}
\end{equation*}
$$

which is independent of n. This comes to proving that

$$
\begin{equation*}
\left(14 s_{n+1}+5 n-5-\frac{12}{n+1}\right) \frac{n+1}{(n+4)^{(2)}} \leq 6 \tag{59}
\end{equation*}
$$

or

$$
\begin{equation*}
s_{n+1} \leq \frac{n-1}{14}+3+\frac{24}{7(n+1)} \tag{60}
\end{equation*}
$$

Now it is seen by a table of $s_{n}{ }^{1}$ that (60) is satisfied for $n<12$, while for $n \geqslant 12$ we may employ

$$
s_{n+1} \leq s_{13}+\frac{n-12}{14}
$$

which inserted in (60) gives, after reduction, the more rigid condition

$$
s_{13}<\frac{53}{14}+\frac{24}{7(n+1)}
$$

which is also satisfied. Hence, (60) and therefore (58) are proved.
Since the second and third of the equations (18) are obtained from the first by a simple exchange of letters, we may now write down as a sufficient condition for the validity of (54) for $0 \leq v \leq n$

$$
\begin{equation*}
3 A \leq a_{0}, \quad 3 B \leq b_{0}, \quad 3 C \leq c_{0} \tag{61}
\end{equation*}
$$

7. As regards finally (16), we isolate the constants of integration, assume $n \geqslant 2$ and write the first of these equations in the form

$$
\begin{align*}
(n+2)^{(2)} \alpha_{n+2} & =m_{1}\left(\beta_{0} e_{n}+\beta_{1} e_{n-1}-\varepsilon_{0} f_{n}-\varepsilon_{1} f_{n-1}\right)-M_{1}\left(\alpha_{0} d_{n}+\alpha_{1} d_{n-1}\right) \\
& +m_{1} \sum_{\nu=2}^{n}\left(\beta_{\nu} e_{n-v}-\varepsilon_{v} f_{n-v}\right)-M_{1} \sum_{\nu=2}^{n} \alpha_{\nu} d_{n-v} \tag{62}
\end{align*}
$$

We write for abbreviation

$$
\begin{equation*}
P_{1}=m_{1}(F+E), P_{2}=m_{2}(F+D), Q_{1}=m_{1} F+M_{1} D, Q_{2}=m_{2} F+M_{2} E \tag{63}
\end{equation*}
$$

and assume that (54) is satisfied for $0 \leq v \leq n$, (39) for $2 \leq v \leq n$. From (32) we obtain

$$
\begin{equation*}
\sum_{\nu=2}^{n} H_{v} H_{n-v}=\frac{\lambda^{n}}{(n+4)^{(3)}}\left(4 s_{n-1}+\frac{4 n-7}{3}+\frac{2}{n+1}\right) \quad(n \geq 2) \tag{64}
\end{equation*}
$$

and thereafter from (62) for $n \geqslant 2$

$$
\begin{gather*}
(n+2)^{(2)}\left|\alpha_{n+2}\right| \leq\left(\left|\alpha_{0}\right| Q_{1}+\left|\beta_{0}\right| P_{1}\right) \frac{\lambda^{n}}{(n+2)^{(2)}}+\left(\left|\alpha_{1}\right| Q_{1}+\left|\beta_{1}\right| P_{1}\right) \frac{\lambda^{n-1}}{(n+1)^{(2)}} \\
+\left(\alpha Q_{1}+\beta P_{1}\right)\left(4 s_{n-1}+\frac{4 n-7}{3}+\frac{2}{n+1}\right) \frac{\lambda^{n}}{(n+4)^{(3)}} \tag{65}
\end{gather*}
$$

[^1]A sufficient condition for $\left|\alpha_{n+2}\right| \leq \alpha H_{n+2}$ is therefore that the right-hand side of (65) is $\leq(n+2)^{(2)} \alpha H_{n+2}$, which after multiplication by $\lambda^{-n} \frac{(n+4)^{(2)}}{(n+2)^{(2)}}$ may be written

$$
\begin{gather*}
\left(\left|\alpha_{0}\right| Q_{1}+\left|\beta_{0}\right| P_{1}\right) \frac{(n+4)(n+3)}{(n+2)^{2}(n+1)^{2}}+\left(\left|\alpha_{1}\right| Q_{1}+\left|\beta_{1}\right| P_{1}\right) \frac{(n+4)(n+3) \lambda^{-1}}{(n+2)(n+1)^{2} n} \\
+\frac{\alpha Q_{1}+\beta P_{1}}{(n+2)^{2}(n+1)}\left(4 s_{n-1}+\frac{4 n-7}{3}+\frac{2}{n+1}\right) \leq \alpha \lambda^{2} \tag{66}
\end{gather*}
$$

In order to find a sufficient condition that does not depend on n we observe that, since we have assumed $n \geqslant 2$,

$$
\begin{equation*}
\frac{(n+4)(n+3)}{(n+2)^{2}(n+1)^{2}}=\left(1+\frac{2}{n+2}\right)\left(1+\frac{1}{n+2}\right) \frac{1}{(n+1)^{2}} \leq \frac{5}{24} \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(n+4)(n+3)}{(n+2)(n+1)^{2} n}=\left(1+\frac{2}{n+2}\right)\left(1+\frac{3}{n}\right) \frac{1}{(n+1)^{2}} \leq \frac{5}{12} \tag{68}
\end{equation*}
$$

We will finally show that for $n \geqslant 2$

$$
\begin{equation*}
\frac{1}{(n+2)^{2}(n+1)}\left(4 s_{n-1}+\frac{4 n-7}{3}+\frac{2}{n+1}\right) \leq \frac{5}{48} \tag{69}
\end{equation*}
$$

For $n=2$ it is seen directly that this holds. For $n \geqslant 3$ we insert the inequality

$$
\begin{equation*}
s_{n-1} \leq \frac{1}{2}+\frac{n}{3} \quad(n \geqslant 3) \tag{70}
\end{equation*}
$$

resulting from (45) for $k=2$. The result may be written

$$
128 \leq 5(n+2)^{2}+48 \frac{3 n+1}{(n+1)^{2}} \quad(n \geqslant 3)
$$

which is easily verified. Hence (69) is proved for $n \geqslant 2$.
If now we insert (67) - (69) in (66), we obtain the sufficient condition, valid for $n \geqslant 2$, but otherwise independent of n,

$$
\begin{equation*}
2\left(\left|\alpha_{0}\right| Q_{1}+\left|\beta_{0}\right| P_{1}\right)+\frac{4}{\lambda}\left(\left|\alpha_{1}\right| Q_{1}+\left|\beta_{1}\right| P_{1}\right)+\alpha Q_{1}+\beta P_{1} \leq \frac{48}{5} \alpha \lambda^{2} \tag{71}
\end{equation*}
$$

Since the three last equations (16) are obtained from the first by a simple exchange of letters, we may now by (71) write down the following sufficient conditions, valid for $n \geqslant 2$

$$
\begin{align*}
& 2\left(\left|\alpha_{0}\right| P_{2}+\left|\beta_{0}\right| Q_{2}\right)+\frac{4}{\lambda}\left(\left|\alpha_{1}\right| P_{2}+\left|\beta_{1}\right| Q_{2}\right)+\alpha P_{2}+\beta Q_{2} \leq \frac{48}{5} \beta \lambda^{2} . \tag{72}\\
& 2\left(\left|\gamma_{0}\right| Q_{1}+\left|\delta_{0}\right| P_{1}\right)+\frac{4}{\lambda}\left(\left|\gamma_{1}\right| Q_{1}+\left|\delta_{1}\right| P_{1}\right)+\gamma Q_{1}+\delta P_{1} \leq \frac{48}{5} \gamma \lambda^{2} . \tag{73}\\
& 2\left(\left|\gamma_{0}\right| P_{2}+\left|\delta_{0}\right| Q_{2}\right)+\frac{4}{\lambda}\left(\left|\gamma_{1}\right| P_{2}+\left|\delta_{1}\right| Q_{2}\right)+\gamma P_{2}+\delta Q_{2} \leq \frac{48}{5} \delta \lambda^{2} . \tag{74}
\end{align*}
$$

8. We may summarize the result of the preceding investigation thus:

If (39) is satisfied for $2 \leq v \leq 3$, (53) for $1 \leq v \leq 2$, (54) for $0 \leq \nu \leq 2$, and if, besides, all the inequalities (47), (48), (52), (61), (71)-(74) are satisfied, then (12) and (13) are convergent provided that $\Sigma H_{v} t^{v}$ converges, that is, for $|t| \leq \frac{1}{\lambda}$.

It may be observed that the condition (52) implies that $A+B<C$.
The question arises whether it is always possible, when the initial values (19) are arbitrarily given, to find such values of $\lambda, \alpha, \beta, \gamma, \delta, A, B, C, D$, E, F that the aforesaid inequalities are all satisfied. This question must be answered in the affirmative. To begin with, λ can always be chosen so large that (71) - (74) are satisfied and that (47), (48) and (52) are reduced to

$$
\begin{aligned}
& \alpha\left|\alpha_{0}\right|+\gamma\left|\gamma_{0}\right|+\frac{2}{3}\left(\alpha^{2}+\gamma^{2}\right)<\frac{A}{2} \\
& \beta\left|\beta_{0}\right|+\delta\left|\delta_{0}\right|+\frac{2}{3}\left(\beta^{2}+\delta^{2}\right)<\frac{B}{2} \\
& \alpha\left|\beta_{0}\right|+\beta\left|\alpha_{0}\right|+\gamma\left|\delta_{0}\right|+\delta\left|\gamma_{0}\right|+\frac{4}{3}(\alpha \beta+\gamma \delta)<\frac{1}{2}(C-A-B)
\end{aligned}
$$

while (61) is unchanged. We now choose A, B and C so small that (61) is satisfied and, besides, $A+B<C$. After this $\alpha, \beta, \gamma, \delta$ may be chosen so small that the three reduced inequalities are satisfied. Small values of A, B, C, $\alpha, \beta, \gamma, \delta$ can always be compensated by an increase of λ.
9. As a simple numerical example to show the practical working of the recurrence formulas we choose

$$
\begin{equation*}
m_{1}=1, m_{2}=2, m_{3}=3 \tag{75}
\end{equation*}
$$

so that

$$
\begin{equation*}
M_{1}=5, M_{2}=4, M_{3}=3 \tag{76}
\end{equation*}
$$

and for the initial values

$$
\left.\begin{array}{lll}
\alpha_{0}=\cdot 5, & \beta_{0}=\cdot 9, & \gamma_{0}=1 \cdot 2, \tag{77}\\
\alpha_{0}=-1 \cdot 2 \\
\alpha_{1}=\cdot 15, & \beta_{1}=-\cdot 1, & \gamma_{1}=-\cdot 2, \\
\delta_{1}=-3
\end{array}\right\}
$$

From these I derive by $(20)-(29)$ the coefficients in the table below ${ }^{1}$ where the exact values of d_{0}, e_{0}, f_{0} are

$$
\begin{equation*}
d_{0}=\frac{1}{2 \cdot 197}, \quad e_{0}=\frac{1}{3 \cdot 375}, \quad f_{0}=\frac{1}{2 \cdot 744} \tag{78}
\end{equation*}
$$

and where at the time $t=0$

$$
\begin{equation*}
r_{1}=\sqrt{a_{0}}=1 \cdot 3, \quad r_{2}=\sqrt{b_{0}}=1 \cdot 5, \quad r_{3}=\sqrt{c_{0}}=1 \cdot 4 \tag{79}
\end{equation*}
$$

As regards the convergence, the sufficient conditions established above are satisfied if we choose, for instance

$$
\left.\begin{array}{l}
\lambda=20, \quad \alpha=\cdot 021, \quad \beta=\cdot 025, \quad \gamma=\cdot 047, \quad \delta=\cdot 038, \tag{80}\\
A=\cdot 14, \quad B=\cdot 17, \quad C=\cdot 60, \quad D=\cdot 92, \quad E=\cdot 60, \quad F=\cdot 73
\end{array}\right\}
$$

The expansions (12) and (13) are therefore at least convergent for $|t| \leq \frac{1}{20}$.

I find for $t=\frac{1}{20}$

$$
\begin{array}{ll}
\varrho_{1}=1 \cdot 66270 & \sigma_{1}=\cdot 466385 \\
\varrho_{2}=2 \cdot 26598 & \sigma_{2}=\cdot 293155 \tag{81}\\
\varrho_{3}=1 \cdot 95711 & \sigma_{3}=\cdot 365223
\end{array}
$$

and from $r_{i}=\sqrt{\varrho_{i}}$

$$
\begin{equation*}
r_{1}=1 \cdot 28946, \quad r_{2}=1 \cdot 50532, \quad r_{3}=1 \cdot 39897 \tag{82}
\end{equation*}
$$

10. A considerable simplification is obtained in the particular case where

$$
\begin{equation*}
\alpha_{1}=\beta_{1}=\gamma_{1}=\delta_{1}=0 \tag{83}
\end{equation*}
$$

Under these circumstances there are only the four arbitrary constants $\alpha_{0}, \beta_{0}, \gamma_{0}, \delta_{0}$ left. The significance of (83) is that at the outset we have

$$
\begin{equation*}
\frac{d \xi_{1}}{d t}=\frac{d \xi_{2}}{d t}=0, \quad \frac{d \eta_{1}}{d t}=\frac{d \eta_{2}}{d t}=0 \quad(t=0) \tag{84}
\end{equation*}
$$

${ }^{1}$ The number of decimals retained in the table has been cut down to seven.

Table.

v	α_{v}	β_{v}	γ_{ν}	δ_{ν}	ε_{v}	ζ_{v}
0	. 5	. 9	$1 \cdot 2$	$-1 \cdot 2$	$1 \cdot 4$	- 0
1	-15	- 1	- $\cdot 2$	- 3	-05	- 5
2	- 6907264	-. 8159544	-1.5432762	$1 \cdot 2573105$	-1.5066808	- $\cdot 2859657$
3	- 1273093	. 1408788	-. 0205691	$\cdot 0576473$. 0135695	.0370782

v	a_{v}	b_{v}	${ }^{c}{ }_{\nu}$	d_{ν}	${ }^{e} \nu$	f_{v}
0	$1 \cdot 69$	$2 \cdot 25$	1.96	-4551661	- 2962963	$\cdot 3644315$
1	- 33	. 54	-14	-1333179	- $\cdot 1066667$	-. 0390462
2	$-4 \cdot 3320893$	-4.3862630	-3.9662061	1.7826770	. 8984223	$1 \cdot 1096677$
3	. 2334175	- 4759671	- 1732921	-7674704	-. 4347952	- $\cdot 2461544$

or, expressed by the coordinates in the absolute movement,

$$
\begin{equation*}
\frac{d x_{1}}{d t}=\frac{d x_{2}}{d t}=\frac{d x_{3}}{d t}, \quad \frac{d y_{1}}{d t}=\frac{d y_{2}}{d t}=\frac{d y_{3}}{d t} \quad(t=0) \tag{85}
\end{equation*}
$$

From (83) follows at once by (22) and (23) that

$$
\begin{equation*}
a_{1}=b_{1}=c_{1}=d_{1}=e_{1}=f_{1}=0, \tag{86}
\end{equation*}
$$

whereafter the general recurrence formulas (16)-(18) show that all the coefficients of the odd order vanish.
11. We shall finally call attention to another particular case where considerable simplifications occur. Let h be an arbitrary constant, and let us for $v=0$ and $v=1$ choose

$$
\begin{equation*}
\gamma_{\nu}=h \alpha_{\nu}, \quad \delta_{v}=h \beta_{v}, \quad \text { whence } \zeta_{v}=h \varepsilon_{\nu} \tag{87}
\end{equation*}
$$

In that case comparison between the first and third, and between the second and fourth, of the equations (16) shows that (87) is valid for all ν. It follows that $(\alpha \delta)_{n}=(\beta \gamma)_{n}$, so that

$$
\begin{equation*}
\xi_{1} \eta_{2}=\eta_{1} \xi_{2} \tag{88}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=\frac{y_{3}-y_{1}}{x_{3}-x_{1}} \tag{89}
\end{equation*}
$$

But a simple geometrical consideration shows that this means that the three bodies are always situated on a straight line.

Under these circumstances the calculation of the coefficients is simplified, because (87) shows that the two last equations (16) are identical with the two first and can be left out, while (17) is reduced to

$$
\begin{align*}
& a_{n}=\left(1+h^{2}\right)(\alpha \alpha)_{n} \\
& b_{n}=\left(1+h^{2}\right)(\beta \beta)_{n} \tag{90}\\
& c_{n}=a_{n}+b_{n}+2\left(1+h^{2}\right)(\alpha \beta)_{n} .
\end{align*}
$$

12. It was mentioned at the outset that if the absolute positions in the plane of the three bodies are required they can be determined afterwards. We will briefly indicate how this may be done.

Writing the third of the equations (6) in the form

$$
\begin{equation*}
\frac{d^{2} x_{3}}{d t^{2}}=m_{2} \xi_{1} \sigma_{1}-m_{1} \xi_{2} \sigma_{2} \tag{91}
\end{equation*}
$$

and putting

$$
\begin{equation*}
u_{n}=m_{2}(\alpha d)_{n}-m_{1}(\beta e)_{n} \tag{92}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{d^{2} x_{3}}{d t^{2}}=\sum_{n=0}^{\infty} u_{n} t^{n}, \tag{93}
\end{equation*}
$$

and integrating this twice, introducing thus two more arbitrary constants, we have the expansion of x_{3}, whereafter by (7)

$$
\begin{equation*}
x_{2}=x_{3}+\xi_{1}, \quad x_{1}=x_{3}-\xi_{2} . \tag{94}
\end{equation*}
$$

The equation for y_{3}

$$
\begin{equation*}
\frac{d^{2} y_{3}}{d t^{2}}=\dot{m}_{2} \eta_{1} \sigma_{1}-m_{1} \eta_{2} \sigma_{2} \tag{95}
\end{equation*}
$$

may be treated in the same way. Putting

$$
\begin{equation*}
v_{n}=m_{2}(\gamma d)_{n}-m_{1}(\delta e)_{n} \tag{96}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{d^{2} y_{3}}{d t^{2}}=\sum_{n=0}^{\infty} v_{n} t^{n} \tag{97}
\end{equation*}
$$

whence, introducing two more arbitrary constants, we find y_{3} and finally by (7)

$$
\begin{equation*}
y_{2}=y_{3}+\eta_{1}, \quad y_{1}=y_{3}-\eta_{2} \tag{98}
\end{equation*}
$$

If the values at $t=0$ of $x_{i}, \frac{d x_{i}}{d t}, y_{i}, \frac{d y_{i}}{d t}$ are chosen arbitrarily, the corresponding values of (19), or $\xi_{i}, \frac{d \xi_{i}}{d t}, \eta_{i}, \frac{d \eta_{i}}{d t}$ at $t=0$, result immediately from (7).

[^0]: 1 J. F. Steffensen: 'On the Restricted Problem of Three Bodies'. Mat. Fys. Medd. Dan. Vid. Selsk. 30, no. 18 (1956).
 ${ }^{2}$ It is assumed throughout that none of the distances r_{1}, r_{2}, r_{3} vanishes.

[^1]: ${ }^{1}$ See, for instance, J. W. Glover: Tables of Applied Mathematics, Ann Arbor, Michigan, 1923, p. 456.

